
COP 4600: Introduction To Operating Systems (Intro) Page 1 © Dr. Mark Llewellyn

COP 4600

Introduction To Operating Systems

Summer 2011

Introductory Material

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4600/sum2011

COP 4600: Introduction To Operating Systems (Intro) Page 2 © Dr. Mark Llewellyn

• In the most general sense an operating system is a
collection of system software routines that sit
between an application program and the computer
hardware on which that application is to be
executed.

What is an Operating System?

USER

Application program

Operating System

HARDWARE

Interfaces
The OS sits

between the

application program

and the hardware

COP 4600: Introduction To Operating Systems (Intro) Page 3 © Dr. Mark Llewellyn

• For now, we can think of an OS as:

1) is the interface or intermediary between a user/application and the
computer hardware

2) provides an environment in which the user can execute programs
conveniently and

• application and/or system software

3) manages the computer’s resources efficiently
• memory, disk space, CPU time, I/O, software, etc.

• Often an OS is a tradeoff between convenience and
efficiency
– Windows (GUI) vs. Unix (command interpreter)

What is an Operating System? (cont.)

COP 4600: Introduction To Operating Systems (Intro) Page 4 © Dr. Mark Llewellyn

The OS As An Intermediary

• What’s an application?

– Software to accomplish a

task

• Spread sheet, word

processor, browser,

email

– What about system

software?

• Depending on who you

ask, can be considered

application programs, a

computer resource, or

part of the OS

COP 4600: Introduction To Operating Systems (Intro) Page 5 © Dr. Mark Llewellyn

What Is A Process?

ALGORITHM

ASSEMBLER

OR

COMPILER

PROGRAM

OBJECT

CODE

LIBRARIES

LINKER
EXECUTABLE

CODE

LOADER

PROBLEM

PROCESS

COP 4600: Introduction To Operating Systems (Intro) Page 6 © Dr. Mark Llewellyn

What Is A Process (cont.)

• A process:

– is a program in execution.

– has a process control block (PCB)

– has a program counter (PC)

• A process can have one or more threads.

– A thread is sometimes known as a lightweight

process

COP 4600: Introduction To Operating Systems (Intro) Page 7 © Dr. Mark Llewellyn

Types of Operating Systems

• Focus on two system resources

– CPU (processor) Utilization

– Main Memory Utilization

• Utilization is measure of busy time over total study time

(Tbusy/TTotal)

• In the old days computers were

– physically very large

– but very small in terms of resources and capabilities

– also very, very expensive

• Important to achieve high utilization of resources

COP 4600: Introduction To Operating Systems (Intro) Page 8 © Dr. Mark Llewellyn

Early Systems

• Instructions and data written in binary

• Loaded using switches on front panel

• Computers also had a few buttons

– Halt, Run, Load, Set PC (displayed contents), Increment PC

• Everything done by programmer there was no real “user” as we

know them today

• Very slow set up time

• Very limited output (set PC and check lights)

• CPU sat idle much of the time.

• Very little wasted memory since RAM was so small.

– Programmers always “squeezed” program into Main Memory

COP 4600: Introduction To Operating Systems (Intro) Page 9 © Dr. Mark Llewellyn

Early Systems - Hardware Innovations

• Needed way to speed up Input & Output (I/O)

• Paper Tape

– Data entry difficult, splicing needed or recopy tape

– Paper tape output faster than looking at lights but hard to

read.

• Punch Cards

– Faster form of input.

– Offline Card-to-Printer improved readability of output

• Magnetic Tape

– Input even faster

– Card-to-tape, tape-to-CPU, CPU-to-tape, tape-to-printer.

• Disk drives as a replacement for tapes

COP 4600: Introduction To Operating Systems (Intro) Page 10 © Dr. Mark Llewellyn

Early Systems - Software Innovations
• Assemblers

– Symbolic programming rather than 1s and 0s

– 1:1 relationship between assembler statements and machine

instructions

• Linkers & Loaders

– allowed the use of code libraries

– didn’t have to rewrite common code

• Compilers

– Programming in High Level Languages (Fortran, COBOL)

– 1:n relationship between a program statement and machine

instructions

– Eased programming task and improved operational efficiency.

COP 4600: Introduction To Operating Systems (Intro) Page 11 © Dr. Mark Llewellyn

Early Systems - People/Procedural Changes

• Too much work for programmer

• Division of labor became necessary.

– Divided tasks between a programmer and professional operator

– Operator could now organize the work more effectively and

“batch” jobs

• Batching

– allows similar jobs to run sequentially

– efficient use of system software

– today, refers more to jobs which lack user interaction

• Example, billing systems used by companies

– still took long time to set up jobs

– CPU frequently sat idle

COP 4600: Introduction To Operating Systems (Intro) Page 12 © Dr. Mark Llewellyn

Running Multiple Programs
• Serial/Sequential Execution

– One job must finish before next job starts

– Results in very low utilization of resources

• Concurrent Execution

– Two or more processes executing at the same time but doing

different activities

– Processes take turns using single shared resource

– Gives the illusion of parallel processing

• Parallel/Simultaneous Execution

– Two or more processes performing the same activity at the same

time

– Requires two or more of the same resource (e.g., processors,

printers, disk drives)

COP 4600: Introduction To Operating Systems (Intro) Page 13 © Dr. Mark Llewellyn

Resident Monitor

• Precursor to the Operating System

– The beginnings of computer “self-governance”

• Resident in memory all the time, Monitored operations

• Primary task was job sequencing

– In beginning read jobs sequentially from tape already prepared

off-line

– With disks, could select which jobs to run and when

• Job Scheduling

• Resident Monitors Improved:

– CPU Utilization: Faster setup, less idle time.

– Memory Utilization: Sharing of I/O drivers/code

– Functionality: Accounting and run time & I/O limits.

COP 4600: Introduction To Operating Systems (Intro) Page 14 © Dr. Mark Llewellyn

The Beginnings of Multiprogramming

• With RM, had two programs running serially:

– Application - RM - Application - RM -

Application, etc.

– Application ran to completion before RM took

over

• Reduced CPU idle time between jobs but not

between I/O operations

– I/O speed very slow compared to CPU speed

– Much of I/O deals with accessing data (tape, disk)

COP 4600: Introduction To Operating Systems (Intro) Page 15 © Dr. Mark Llewellyn

An Aside On The Memory Hierarchy

Registers

Cache

Primary/Main (RAM)

Secondary

Tertiary

faster, more

expensive,

smaller

amounts

Slower,

cheaper, larger

amounts

Both special and general purpose.

On processor chip.

Buffers memory requests.

Maybe multiple levels.

Organized in word and bytes.

Fixed media, including hard

disks, optical disks, etc.

Removable media, including

tapes, floppy disks, CDs, etc.

COP 4600: Introduction To Operating Systems (Intro) Page 16 © Dr. Mark Llewellyn

Multiprogramming (cont.)

• Need some way to perform CPU

and I/O operations at the same

time

• Keep more than one user program

in memory

• Switch between programs during

I/O operations

Operating System

Process 1

Process 2

Process 3

COP 4600: Introduction To Operating Systems (Intro) Page 17 © Dr. Mark Llewellyn

Multiprogramming (cont.)

• More efficient use of system, less idle time.

• Made possible because of reduced memory costs.

• Created a whole new set of problems:

– Memory Management

– Protection Mechanisms

– Job Scheduling

– CPU/Process Scheduling

• Improves resource utilization but not user interaction

– “...manages the computer’s resources efficiently...”

• What about conveniences

– “...the user can execute programs conveniently...”

COP 4600: Introduction To Operating Systems (Intro) Page 18 © Dr. Mark Llewellyn

Time Sharing

• Introduced to improve the interaction with computer

– Use of terminals and teleprinters

– Allows user to input data and interact with program

• Give each process a slice of CPU time

– Don’t wait for next I/O operation

– Similar to multiplexing

• Possible because user input is so slow

– 1 char takes 1000 milliseconds to enter while only 2

milliseconds required for an interrupt handler

• Required the development of virtual memory, online file

systems and directory structures

• Today’s systems generally support a combination of batch and

time sharing.

COP 4600: Introduction To Operating Systems (Intro) Page 19 © Dr. Mark Llewellyn

Other Operating System Developments

• Real Time - Response time is critical

– Hard Real Time

• Industrial & Robotic controls.

• Very small bounded delays.

• Little use of swapping or secondary storage.

– Soft Real Time

• Immediate response not as critical.

• Monitoring devices, etc.

• Longer delays tolerated

• Use of secondary storage & priority scheduling.

COP 4600: Introduction To Operating Systems (Intro) Page 20 © Dr. Mark Llewellyn

Other Developments (cont.)

• Personal Computers

– Many of the OS features we’ll study are incorporated in

today’s PCs.

– Change in priority since hardware is cheap and only a

single user.

– Greater emphasis on convenience than on efficiency

– Ultimate in interactive – in a way, we’ve gone back to the

early days

– Adds new demands also – networking and multimedia.

• Handheld Systems

COP 4600: Introduction To Operating Systems (Intro) Page 21 © Dr. Mark Llewellyn

Other Developments (cont.)

• Parallel vs. Distributed Systems vs. Clustered

– Needed for various reasons: larger problems, larger data

requirements,

– Parallel/Tightly coupled –share resources (e.g., memory, clock, bus,

OS, disks)

• Asymmetric multiprocessing – master/slave

• Symmetric multiprocessing – each processor has copy of OS

• Typically used for scientific applications and simulations.

– Distributed/Loosely coupled – Separate computers linked via

network.

• Used for client/server applications

• Peer-to-Peer applications

– Clustered Systems

• Computers linked by network but sharing storage

COP 4600: Introduction To Operating Systems (Intro) Page 22 © Dr. Mark Llewellyn

Performance Measurements

• Utilization (maximize)

– U = Tbusy / Ttotal where Ttotal is total study time, or

– U = Tused / Tavailable

• Throughput (maximize)

– X = C / T where C is number of completed jobs/processes and T

is time frame

– The rate at which requests are processed

COP 4600: Introduction To Operating Systems (Intro) Page 23 © Dr. Mark Llewellyn

Performance Measurements (cont.)

• Turnaround Time (minimize)

– Typically used in reference to batch systems

– The time it takes to complete/execute a job/process

• Response Time (minimize)

– Typically used in reference to interactive systems

– The time it takes for the system to respond to a user request from

submission to start of a response

COP 4600: Introduction To Operating Systems (Intro) Page 24 © Dr. Mark Llewellyn

Computer System Structure

Computer system can be divided into four components

– Hardware – provides basic computing resources

• CPU, memory, I/O devices

– Operating system

• Controls and coordinates use of hardware among various

applications and users

– Application programs – define the ways in which the system

resources are used to solve the computing problems of the users

• Word processors, compilers, web browsers, database systems,

video games

– Users

• People, machines, other computers

COP 4600: Introduction To Operating Systems (Intro) Page 25 © Dr. Mark Llewellyn

Four Components of a Computer System

COP 4600: Introduction To Operating Systems (Intro) Page 26 © Dr. Mark Llewellyn

Operating System Definition

• OS is a resource allocator

– Manages all resources

– Decides between conflicting requests for efficient

and fair resource use

• OS is a control program

– Controls execution of programs to prevent errors

and improper use of the computer

COP 4600: Introduction To Operating Systems (Intro) Page 27 © Dr. Mark Llewellyn

Operating System Definition (cont.)

• No universally accepted definition

• “Everything a vendor ships when you order an operating system”

is good approximation

– But varies wildly, some OS require less than 1MB and do not

even have a full-screen editor, while others require many GBs and

are entirely based on graphical windowing systems.

– Recall that in 1998 the U.S Department of Justice filed suit

against Microsoft, in essence claiming that Microsoft included too

much functionality in its OS and thus prevented vendors from

competing.

• “The one program running at all times on the computer” is the

kernel. Everything else is either a system program (ships with the

operating system) or an application program

COP 4600: Introduction To Operating Systems (Intro) Page 28 © Dr. Mark Llewellyn

Computer System Organization
Computer-system operation

– One or more CPUs, device controllers connect through

common bus providing access to shared memory

– Concurrent execution of CPUs and devices competing for

memory cycles

COP 4600: Introduction To Operating Systems (Intro) Page 29 © Dr. Mark Llewellyn

Computer-System Operation

• I/O devices and the CPU can execute concurrently.

• Each device controller is in charge of a particular

device type.

• Each device controller has a local buffer.

• CPU moves data from/to main memory to/from local

buffers

• I/O is from the device to local buffer of controller.

• Device controller informs CPU that it has finished its

operation by causing an interrupt.

COP 4600: Introduction To Operating Systems (Intro) Page 30 © Dr. Mark Llewellyn

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service routine

generally, through the interrupt vector, which contains

the addresses of all the service routines.

• Interrupt architecture must save the address of the

interrupted instruction.

• Incoming interrupts are disabled while another interrupt

is being processed to prevent a lost interrupt.

• A trap is a software-generated interrupt caused either by

an error or a user request.

• An operating system is interrupt driven.

COP 4600: Introduction To Operating Systems (Intro) Page 31 © Dr. Mark Llewellyn

Interrupt Handling

• The operating system preserves the state of the CPU

by storing registers and the program counter.

• Determines which type of interrupt has occurred:

– polling

– vectored interrupt system

• Separate segments of code determine what action

should be taken for each type of interrupt

COP 4600: Introduction To Operating Systems (Intro) Page 32 © Dr. Mark Llewellyn

Interrupt Timeline

COP 4600: Introduction To Operating Systems (Intro) Page 33 © Dr. Mark Llewellyn

I/O Structure
• After I/O starts, control returns to user program only upon I/O

completion.

– Wait instruction idles the CPU until the next interrupt

– Wait loop (contention for memory access).

– At most one I/O request is outstanding at a time, no simultaneous
I/O processing.

• After I/O starts, control returns to user program without
waiting for I/O completion.

– System call – request to the operating system to allow user to wait
for I/O completion.

– Device-status table contains entry for each I/O device indicating
its type, address, and state.

– Operating system indexes into I/O device table to determine
device status and to modify table entry to include interrupt.

COP 4600: Introduction To Operating Systems (Intro) Page 34 © Dr. Mark Llewellyn

Two I/O Methods

Synchronous Asynchronous

COP 4600: Introduction To Operating Systems (Intro) Page 35 © Dr. Mark Llewellyn

Device-Status Table

COP 4600: Introduction To Operating Systems (Intro) Page 36 © Dr. Mark Llewellyn

Direct Memory Access Structure

• Used for high-speed I/O devices able to transmit

information at close to memory speeds.

• Device controller transfers blocks of data from buffer

storage directly to main memory without CPU

intervention.

• Only one interrupt is generated per block, rather than

the one interrupt per byte.

COP 4600: Introduction To Operating Systems (Intro) Page 37 © Dr. Mark Llewellyn

Storage Structure

• Main memory – only large storage media that the

CPU can access directly.

• Secondary storage – extension of main memory that

provides large nonvolatile storage capacity.

• Magnetic disks – rigid metal or glass platters covered

with magnetic recording material

– Disk surface is logically divided into tracks, which

are subdivided into sectors.

– The disk controller determines the logical

interaction between the device and the computer.

COP 4600: Introduction To Operating Systems (Intro) Page 38 © Dr. Mark Llewellyn

The Memory Hierarchy

Registers

(level 1)

Cache

(level 2)

Primary/Main (RAM)

(level 3)

Secondary

(level 4)

Tertiary

(level 5)

faster, more

expensive,

smaller

amounts

Slower,

cheaper, larger

amounts

Both special and general purpose.

On processor chip.

Buffers memory requests.

Maybe multiple levels.

Organized in word and bytes.

Fixed media, including hard

disks, optical disks, etc.

Removable media, including

tapes, floppy disks, CDs, etc.

COP 4600: Introduction To Operating Systems (Intro) Page 39 © Dr. Mark Llewellyn

Performance of Various Levels of Storage

• Movement between levels of storage hierarchy can be explicit

or implicit

COP 4600: Introduction To Operating Systems (Intro) Page 40 © Dr. Mark Llewellyn

Migration of Integer A from Disk to Register

• Multitasking environments must be careful to use most recent

value, no matter where it is stored in the storage hierarchy.

• Multiprocessor environments must provide cache coherency in

hardware such that all CPUs have the most recent value in

their cache

• Distributed environment situation even more complex

– Several copies of a datum can exist

– We’ll deal with this more complex situation later in the

course.

COP 4600: Introduction To Operating Systems (Intro) Page 41 © Dr. Mark Llewellyn

Operating System Structure

• Multiprogramming needed for efficiency

– Single user cannot keep CPU and I/O devices busy at
all times

– Multiprogramming organizes jobs (code and data) so
CPU always has one to execute

– A subset of total jobs in system is kept in memory

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS switches
to another job

COP 4600: Introduction To Operating Systems (Intro) Page 42 © Dr. Mark Llewellyn

Operating System Structure (cont.)

• Timesharing (multitasking) is logical extension in which
CPU switches jobs so frequently that users can interact with
each job while it is running, creating interactive computing.

– Response time should be < 1 second

– Each user has at least one program executing in memory
process

– If several jobs ready to run at the same time  CPU
scheduling

– If processes don’t fit in memory, swapping moves them in
and out to run

– Virtual memory allows execution of processes not
completely in memory

COP 4600: Introduction To Operating Systems (Intro) Page 43 © Dr. Mark Llewellyn

Memory Layout for Multiprogrammed System

COP 4600: Introduction To Operating Systems (Intro) Page 44 © Dr. Mark Llewellyn

Operating-System Operations

• Interrupt driven by hardware

• Software error or request creates exception or trap

– Division by zero, request for operating system service

• Other process problems include infinite loop, processes
modifying each other or the operating system

• Dual-mode operation allows OS to protect itself and other system

components. The two modes are: User mode and kernel mode

– The Mode bit is provided by hardware

• Provides ability to distinguish when system is running user code
or kernel code

• Some instructions designated as privileged, only executable in
kernel mode

• System call changes mode to kernel, return from call resets it to
user

COP 4600: Introduction To Operating Systems (Intro) Page 45 © Dr. Mark Llewellyn

Transition from User to Kernel Mode

• Timer to prevent infinite loop / process hogging resources

– Set interrupt after specific period

– Operating system decrements counter

– When counter zero generate an interrupt

– Set up before scheduling process to regain control or

terminate program that exceeds allotted time

COP 4600: Introduction To Operating Systems (Intro) Page 46 © Dr. Mark Llewellyn

Process Management

• A process is a program in execution. It is a unit of work within
the system. A program is a passive entity, a process is an active
entity.

• A process needs resources to accomplish its task

– CPU, memory, I/O, files

– Initialization data

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying
location of next instruction to execute

– Process executes instructions sequentially, one at a time, until
completion

• Multi-threaded process has one program counter per thread

• Typically system has many processes, some user, some
operating system running concurrently on one or more CPUs

– Concurrency by multiplexing the CPUs among the processes / threads

COP 4600: Introduction To Operating Systems (Intro) Page 47 © Dr. Mark Llewellyn

Process Management Activities

The operating system is responsible for the following

activities in connection with process management:

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

• Providing mechanisms for deadlock handling

COP 4600: Introduction To Operating Systems (Intro) Page 48 © Dr. Mark Llewellyn

Memory Management

• All data in memory before and after processing

• All instructions in memory in order to execute

• Memory management determines what is in memory when

– Optimizing CPU utilization and computer response to users

• Memory management activities

– Keeping track of which parts of memory are currently

being used and by whom

– Deciding which processes (or parts thereof) and data to

move into and out of memory

– Allocating and deallocating memory space as needed

COP 4600: Introduction To Operating Systems (Intro) Page 49 © Dr. Mark Llewellyn

Storage Management
• OS provides uniform, logical view of information storage

– Abstracts physical properties to logical storage unit - file

– Each medium is controlled by device (i.e., disk drive, tape drive)

• Varying properties include access speed, capacity, data-transfer rate,
access method (sequential or random)

• File-System management

– Files usually organized into directories

– Access control on most systems to determine who can access what

– OS activities include

• Creating and deleting files and directories

• Primitives to manipulate files and directories

• Mapping files onto secondary storage

• Backup files onto stable (non-volatile) storage media

COP 4600: Introduction To Operating Systems (Intro) Page 50 © Dr. Mark Llewellyn

Mass-Storage Management
• Usually disks used to store data that does not fit in main memory

or data that must be kept for a “long” period of time.

• Proper management is of central importance

• Entire speed of computer operation hinges on disk subsystem and

its algorithms

• OS activities

– Free-space management

– Storage allocation

– Disk scheduling

• Some storage need not be fast

– Tertiary storage includes optical storage, magnetic tape

– Still must be managed

– Both WORM (write-once, read-many-times) and RW (read-write) are

used

COP 4600: Introduction To Operating Systems (Intro) Page 51 © Dr. Mark Llewellyn

I/O Subsystem

• One purpose of OS is to hide peculiarities of hardware

devices from the user

• I/O subsystem responsible for

– Memory management of I/O including buffering

(storing data temporarily while it is being

transferred), caching (storing parts of data in faster

storage for performance), spooling (the overlapping

of output of one job with input of other jobs)

– General device-driver interface

– Drivers for specific hardware devices

COP 4600: Introduction To Operating Systems (Intro) Page 52 © Dr. Mark Llewellyn

Protection and Security
• Protection – any mechanism for controlling access of processes

or users to resources defined by the OS

• Security – defense of the system against internal and external
attacks

– Huge range, including denial-of-service, worms, viruses, identity theft,
theft of service

• Systems generally first distinguish among users, to determine
who can do what

– User identities (user IDs, security IDs) include name and associated
number, one per user

– User ID then associated with all files, processes of that user to determine
access control

– Group identifier (group ID) allows set of users to be defined and controls
managed, then also associated with each process, file

– Privilege escalation allows user to change to effective ID with more rights

COP 4600: Introduction To Operating Systems (Intro) Page 53 © Dr. Mark Llewellyn

Computing Environments

• Traditional computer

– Blurring over time

– Office environment

• PCs connected to a network, terminals attached to

mainframe or minicomputers providing batch and

timesharing

• Now portals allowing networked and remote systems

access to same resources

– Home networks

• Used to be single system, then modems

• Now firewalled, networked

COP 4600: Introduction To Operating Systems (Intro) Page 54 © Dr. Mark Llewellyn

Computing Environments (cont.)

 Client-Server Computing

 Dumb terminals supplanted by smart PCs

 Many systems now servers, responding to requests generated by
clients

Compute-server provides an interface to client to request
services (i.e. database)

File-server provides interface for clients to store and retrieve
files

COP 4600: Introduction To Operating Systems (Intro) Page 55 © Dr. Mark Llewellyn

Peer-to-Peer Computing

• Another model of distributed system

• P2P does not distinguish clients and servers

– Instead all nodes are considered peers

– May each act as client, server or both

– Node must join P2P network

• Registers its service with central lookup service on

network, or

• Broadcast request for service and respond to requests

for service via discovery protocol

– Examples include Napster and Gnutella

COP 4600: Introduction To Operating Systems (Intro) Page 56 © Dr. Mark Llewellyn

Web-Based Computing

• Web has become ubiquitous

• PCs most prevalent devices

• More devices becoming networked to allow web access

• New category of devices to manage web traffic among

similar servers: load balancers

• Use of operating systems like Windows 95, client-side,

have evolved into Linux and Windows 7, which can be

clients and servers

COP 4600: Introduction To Operating Systems (Intro) Page 57 © Dr. Mark Llewellyn

Operating System Services

• An OS provides a number of services to a user

or application program including:

– Communications

– Resource Allocation

– Accounting

– Protection

– Error Detection

– Program Execution

– I/O Operations (explicit requests)

– File System Manipulation

COP 4600: Introduction To Operating Systems (Intro) Page 58 © Dr. Mark Llewellyn

An Event Driven System

• OS services are performed on behalf of the user or application

program in response to specific events.

– The OS does not perform any “useful” work (e.g., solve a

user’s problem)

– Unless prompted, the OS just stays out of the way as much

as possible

• Events include:

– Hardware Interrupts from external (non-processor) devices

– Interrupts caused by execution of a program (aka software

interrupts)

• Supervisor Calls - User/Application request OS service

• Trap - Error occurs during execution

COP 4600: Introduction To Operating Systems (Intro) Page 59 © Dr. Mark Llewellyn

Computing Cycle

• Modern computers operate using a three-step cycle:

– Fetch

• Get next instruction pointed to by the program counter

• Increment the program counter

• Decode the instruction and operands

– Execute

• Execute the instruction (if possible)

• If instruction is a supervisor call, turn control over to OS

– Interrupt

• Inspect interrupt flags to determine if error has occurred (e.g.,

overflow trap) or hardware device requires attention (e.g., printer

hardware interrupt)

• If no interrupt, repeat cycle

• If interrupt, turn control over to OS which executes appropriate

interrupt handler

COP 4600: Introduction To Operating Systems (Intro) Page 60 © Dr. Mark Llewellyn

OS / Hardware Linkage

• Modern operating systems required the development of special

hardware components to perform various services.

MB LIMIT

BASE

MARMDR

PC/IP

IR

GPR

0

1

2

3

n

Interrupt Flip/Flops

4

5

 0 1 2 3 15

ALU

Overflow

COP 4600: Introduction To Operating Systems (Intro) Page 61 © Dr. Mark Llewellyn

OS / Hardware Linkage (cont.)

MDR Memory Data Register

Instructions or data are loaded in this special purpose register from memory one

word at a time over the system bus. Data to be stored in memory is placed here

first, then sent to memory over the system bus.

MAR Memory Address Register

Contains the address of the word to be stored in / retrieved from memory.

BASE Base Address Register

Lowest physical memory address allocated to a process.

LIMIT Limit Address Register

Highest physical memory address allocated to a process.

PC/IP Program Counter / Instruction Pointer

Contains the address of the next instruction to be executed.

GPR General Purpose Registers

These registers are programmer accessible. Program data is stored here

temporarily for use by the ALU.

IR Instruction Register

Operation codes are extracted from the MDR and copied to this register.

During decoding the processor determines what operation to perform and what

operands are required.

MB Mode Bit

Used in dual mode operation to indicate whether CPU is in user mode (1) or

operating system / supervisor mode (0)

ALU Arithmetic Logic Unit

Performs the actual operations (add, sub, compare, etc) on program data.

COP 4600: Introduction To Operating Systems (Intro) Page 62 © Dr. Mark Llewellyn

Dual Mode Operation

• Uses a Mode Bit to indicate whether a user process or OS

process is running

– 0 = Supervisor Mode (aka monitor mode, system mode)

– 1 = User Mode

• Allows OS to protect itself and user processes

• Only privileged instructions can be executed in supervisor

mode

– e.g., set mode bit, set timer, reset interrupts

• Can also be used for I/O protection

– Make I/O instructions privileged.

– Require system calls (SVC) for users to request I/O

operations

COP 4600: Introduction To Operating Systems (Intro) Page 63 © Dr. Mark Llewellyn

Dual Mode Operation (cont.)

MB LIMIT

BASE

MARMDR

PC/IP

IR

GPR

0

1

2

3

n

Interrupt Flip/Flops

4

5

 0 1 2 3 15

ALU

Overflow

OS Area

User Area

System Bus

Memory

Controller

Printer

Controller

System

Timer

Interrupt Signals

OPC ADDR50000

50000

OPC ADDR

OPC

ADDR

1/0

COP 4600: Introduction To Operating Systems (Intro) Page 64 © Dr. Mark Llewellyn

CPU Protection

• Need to prevent a user process from monopolizing

the CPU

– e.g., catch infinite loops

• Uses a System Timer connected to an interrupt

flip/flop

– When timer counts down to zero, interrupt is

raised

• Can also be used to implement time sharing

COP 4600: Introduction To Operating Systems (Intro) Page 65 © Dr. Mark Llewellyn

CPU Protection (cont.)

MB LIMIT

BASE

MARMDR

PC/IP

IR

GPR

0

1

2

3

n

Interrupt Flip/Flops

4

5

 0 1 2 3 15

101 729

115 2440

 500

102 1085
103 2111

500 op | oprnds

In
te

rr
u

p
t

V
e

c
to

r

ALU

Overflow

OS Area

User Area

574 op | oprnds T
im

e
r

In
te

rr
u

p
t

H
a
n

d
le

r

System Bus

Memory

Controller

Printer

Controller

System

Timer

Interrupt Signals

1

100

COP 4600: Introduction To Operating Systems (Intro) Page 66 © Dr. Mark Llewellyn

Memory Protection

• Required to prevent user processes from accessing / writing to

memory outside of their allocated portion of RAM.

• In single-program environment uses a fence register

• For multi-programming, use base and limit

– Base - Lowest address in process’ memory allocation

– Limit - Highest address in process’ memory allocation

• Address of each memory location accessed / written to by user

process is compared with base and limit (or fence)

– If “out of bounds” traps to OS

COP 4600: Introduction To Operating Systems (Intro) Page 67 © Dr. Mark Llewellyn

Memory Protection (cont.)

MB LIMIT

BASE

MARMDR

PC/IP

IR

GPR

0

1

2

3

n

Interrupt Flip/Flops

4

5

 0 1 2 3 15

ALU

Overflow

OS Area

User 1 Area

System Bus

Memory

Controller

Printer

Controller

System

Timer

Interrupt Signals

OPC ADDR50000

50000

OPC ADDR

OPC

ADDR

User 2 Area

30000

120000

30000

120000

COP 4600: Introduction To Operating Systems (Intro) Page 68 © Dr. Mark Llewellyn

Error Detection

• OS can trap various errors that occur during

execution of a user process

• Math Overflow:

– Occurs when adding two numbers and result too

big for accumulator

– Overflow bit changes to “1” if error occurs

• Divide by Zero

– Occurs when dividing by zero value

– Hardware compares opcode with value of divisor.

– If opcode is DIV and divisor = 0 then trap to OS

COP 4600: Introduction To Operating Systems (Intro) Page 69 © Dr. Mark Llewellyn

Error Detection Math Overflow

MB LIMIT

BASE

MARMDR

PC/IP

IR

GPR

0

1

2

3

n

Interrupt Flip/Flops

4

5

 0 1 2 3 15

1 1 1 1

ALU

0 0 0 1
Overflow

OS Area

User Area

System Bus

Memory

Controller

Printer

Controller

System

Timer

Interrupt Signals

ADD R1,R250000

50000

ADD R1,R2

ADD

1111

0001

0 0 0 01

COP 4600: Introduction To Operating Systems (Intro) Page 70 © Dr. Mark Llewellyn

Error Detection - Divide by Zero

MB LIMIT

BASE

MARMDR

PC/IP

IR

GPR

0

1

2

3

n

Interrupt Flip/Flops

4

5

 0 1 2 3 15

ALU

Overflow

OS Area

User Area

System Bus

Memory

Controller

Printer

Controller

System

Timer

Interrupt Signals

DIV R1,R250000

50000

DIV R1,R2

DIV

56789

0

COP 4600: Introduction To Operating Systems (Intro) Page 71 © Dr. Mark Llewellyn

Handling I/O Operations

• I/O operations typically initiated by user request

– System or Supervisor Calls (SVC)

• OS communicates user’s request to appropriate I/O device

controller

– Synchronous I/O - control returned to user process after

I/O completes

– Asynchronous I/O - control returned immediately back to

user process

• OS notified of I/O completion when device controller raises

hardware interrupt flag

– Device can also use interrupt to signal status (e.g., out of

paper, no media)

COP 4600: Introduction To Operating Systems (Intro) Page 72 © Dr. Mark Llewellyn

Handling I/O Operations (cont.)

MB LIMIT

BASE

MARMDR

PC/IP

IR

GPR

0

1

2

3

n

Interrupt Flip/Flops

4

5

 0 1 2 3 15

101 729

115 2440

100 500

102 1085
103 2111

729 op8 | oprnds

In
te

rr
u

p
t

V
e

c
to

r

ALU

Overflow

7001 op2 | oprnds
7002 op3 | oprnds
7003 SVC (I/O)
7004 op6 | oprnds

8158 op7 | oprnds
8159 op10| oprnds

OS Area

User Area

P
ro

c
e

s
s
 1

7000 op1 | oprnds

8999 data

832 op9 | oprnds In
tr

p
t

1

H
a
n

d
le

r

5022 op4 | oprnds

5134 op5 | oprnds S
V

C
(I

/O
)

H
a
n

d
le

r

Used by other

processes

Interrupt 1

System Bus

Memory

Controller

Printer

Controller

System

Timer

Interrupt Signals

8160 |

COP 4600: Introduction To Operating Systems (Intro) Page 73 © Dr. Mark Llewellyn

Processing Interrupts

• Interrupt Vector - a series or array of addresses stored

in lower memory which point to each interrupt

handler.

• Interrupt Handlers - portions of OS program

specifically written to deal with each interrupt type

• Remember......

– A process is a program in execution

– An OS is a program

– Therefore, OS is also a process

– Very large OS, may spawn multiple processes

COP 4600: Introduction To Operating Systems (Intro) Page 74 © Dr. Mark Llewellyn

When An Interrupts Occurs:
• Mode bit set to supervisor mode (0)

• Based on which flip/flop raised, retrieves address of interrupt

handler from the interrupt vector and places in PC

• OS begins executing:

– Handler must save PC and Registers for current user process

• Context Switch

– Run the interrupt handler (take care of problem)

– Interrupt handler may disable or mask interrupts during processing

(don’t want to interrupt the interrupt handler)

• Upon completion, OS:

– Resets, unmasks and/or enables interrupt flip/flops

– Restores user process registers and program counter

– Sets mode bit to 1 (user mode)

– Loads PC with next instruction in user process

